Design and manufacturing large scale diffusion bonding hot presses

Dr.-Ing. Jan Pfeiffer
(PVA TePla Group)
Vakuum systems and contract services for heat treatment of High-End Materials:

<table>
<thead>
<tr>
<th></th>
<th>COD</th>
<th>PPN</th>
<th>VSG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sinter-HiP Furnace</td>
<td>PulsPlasma Nitriding Furnace</td>
<td>Melting and Casting Furnace</td>
</tr>
<tr>
<td></td>
<td>COV</td>
<td>MOV</td>
<td>MOV-HP</td>
</tr>
<tr>
<td></td>
<td>Graphite-Heated-Vacuum-Furnace</td>
<td>Metal-heated-Vacuum-Furnace</td>
<td>Hot-Press-Vacuum-Furnace</td>
</tr>
</tbody>
</table>

Headquarter, assembly and contract service workshops (Wettenberg, Germany)
THE PVA TEPLA DIFFUSION BONDING “TASK FORCE”
AGENDA:

I. Overall design procedure

II. Pressing System
 A) Multicolumn designs
 B) Methods
 C) Materials Data
 D) Control system

III. Heating System

IV. Manufacturing
I.) Design Procedure
Product driven bottom up design:

- The defined product portfolio dictates the sizing and the complexity
- Customer requirement input

- Vacuum pumping unit
- Pressing unit
- Gas, liquid and power connection
- SPS/Hardware

- Cold wall stainless steel
- Doors, flanges and feed-throughs

- Heaters and thyristors
- Thermal couples
- Cooling system

- Force distribution system
- Measurement systems (Load and positioning)
II.) Pressing System
LARGE SCALE DIFFUSION BONDING

LOAD:
- If the size of the part is bigger than the ram size → load is lower on the boarders of the part.
- Bonding not sufficient.
- Risk of distortion.

TEMPERATURE:
- Excessively higher dwell times have to be considered.
- Microstructural differences between outer and inner part (e.g. grain growth).
- Residual stresses

TEMPERATURE-LOAD-INTERDEPENDENCE:
- Yield-strength is a function of temperature.
- Non uniform joining results
Multicolumn design:

- Reduction of the overall inhomogeneity of the force distribution
- Less thermal mass in the furnace, thus effective heating and cooling
- Size is limited only by the available pressing plates

800 x 600 x 400 mm³ 1000 x 900 x 480 mm³ 1500 x 600 x 500 mm³
Development of columnar designs:
With Large-Scale systems, the deciding factor is the stiffness of the pressing plates and pillars.

Starting point of design is the part size and material as well as customer specifications.

Calculation/Implementation of the necessary force via numerical simulation (FEM) becomes unavoidable.
Experimental:

- Thermogravimetric analyses of the decomposition and/or melting
- Microstructural analyses using a SEM (Usually in backscattered mode for material contrast)

Results

- Decomposition under Vacuum above 1400°C indicating metallic or silicon impurities
Experimental:
- LCF testing under compression

Results:
- Force needed to delaminate one isolated pillar = 800 KN
- Maximum compression stress = 148 MPa
- Youngs modulus = 86.2 Gpa
- Due to laminated structure anisotropy effects occur (Different compression on different positions around the circumference)
- Very low ratcheting or creep effects
Control of the pressing – measurement:

- Two main values – applied force and position of the pressing plate
- Transformation from the calculated force (based on the hydraulic pressure of the system) to direct measurement using load cells (precision and safety).
- Due to modern positioning sensors a measurement with a resolution ~1 µm becomes possible (until now ~10µm)
- Operating strategies:
 - Force controlled systems (standard)
 - Position controlled (absolute/relative)
 - Combined force-position controlled

<table>
<thead>
<tr>
<th>Segment</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process step</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Time [min]</td>
<td>0</td>
<td>120</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Temperature [°C]</td>
<td>20</td>
<td>600</td>
<td>600</td>
<td>980</td>
</tr>
<tr>
<td>Temperature tolerance controller [°C]</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Temperature tolerance holdback [°C]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hold Back Timeout Heating [min]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pressure set value [mbar]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pressing capacity F1 [kN]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pressing capacity F2 [kN]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Force Tolerance [kN]</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Position absolut Z [mm]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Position relativ +/-Z [mm]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Distance Tolerance [mm]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Holding time 1 [min]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Holding time 2 [min]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of Loops [-]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Speed of Plunger [mm/s]</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Gradient of Force [kn/s]</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

June 21-22, 2017
III.) Heating and cooling
HEATING SYSTEM:

Mo-Heated:
- Hydrocarbon-free high vacuum atmosphere possible.
- Highest flexibility of possible materials to bond (Ti, highly alloyed steels, Ni-based super alloys).
- More complex and more expensive heating set-up.

Graphite/CFC-Heated:
- High vacuum atmosphere possible.
- Usable for robust processing, thus for serial and mass production.
- Less complex and less expensive.
IV.) Manufacturing
“Bottleneck” structures have to be treated with special attention (Heaters, Vessel and Doors, Force distribution system).

- Periphery manufacturing/buying can be delayed or pre-prepared
- Assembly phase
- Factory acceptance
Thank you for your attention!

Questions?